Carleman estimates and inverse problems for Dirac operators
نویسندگان
چکیده
منابع مشابه
Carleman Estimates and Inverse Problems for Dirac Operators
We consider limiting Carleman weights for Dirac operators and prove corresponding Carleman estimates. In particular, we show that harmonic functions can be considered as limiting Carleman weights for Dirac operators. As an application we consider the inverse problem of recovering a Lipschitz continuous magnetic field and electric potential from boundary measurements for the Pauli Dirac operator.
متن کاملPartial Data Inverse Problems for Maxwell Equations via Carleman Estimates
In this article we consider an inverse boundary value problem for the timeharmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary data is measured on a possibly very small set. This is an extension of earlier scalar results of BukhgeimUhlmann and Kenig-Sjöstrand-Uhlmann to the Maxwell system. The main co...
متن کاملInverse Problems with Partial Data for a Dirac System: a Carleman Estimate Approach
We prove that the material parameters in a Dirac system with magnetic and electric potentials are uniquely determined by measurements made on a possibly small subset of the boundary. The proof is based on a combination of Carleman estimates for first and second order systems, and involves a reduction of the boundary measurements to the second order case. For this reduction a certain amount of d...
متن کاملLimiting Carleman Weights and Anisotropic Inverse Problems
In this article we consider the anisotropic Calderón problem and related inverse problems. The approach is based on limiting Carleman weights, introduced in [13] in the Euclidean case. We characterize those Riemannian manifolds which admit limiting Carleman weights, and give a complex geometrical optics construction for a class of such manifolds. This is used to prove uniqueness results for ani...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2008
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-008-0301-9